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INTRODUCTION 

The reduction of nitric oxide became a topic of great interest in 

catalytic chemistry when the Clean Air Act of 1970 called for the 

effective removal of nitric oxide from automobile exhaust. The catalytic 

properties of supported ruthenium for this reaction have been found to 

be unique among the noble metals. Most noble metals catalyze the 

reduction of nitric oxide in the presence of hydrogen and carbon monoxide, 

but many produce various amounts of nitrous oxide and ammonia which 

are undesirable from an environmental point of view. Only ruthenium 

stands out as a metal which produces mainly nitrogen (1-6). 

Efforts to characterize highly idealized gas-solid reaction systems 

by various methods under ultrahigh vacuum conditions are motivated by 

the philosophy that "real" catalytic systems, while too complex to be 

described, can be manipulated in a qualitatively predictable fashion on 

the basis of insight achieved from the quantitative description of the 

properties of well-characterized if simpler systems. It is widely 

believed that the determination of the geometrical and electronic 

structure of chemisorbed intermediates and the systematic relating 

of this structure to the catalytic activity comprise the main ingredient 

in establishing models of catalytic reactions with predictive capability. 

Studies of the interactions of small gaseous molecules with clean surfaces 

are the bases of catalytic studies, but despite the practical importance 
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of ruthenium catalysts, relatively few such studies have been performed 

(7-11). 

The purpose of this investigation was to employ the low-energy 

electron diffraction (LEED) technique to probe the atomic geometry of 

the surfaces that resulted from the steady-state interaction of nitric 

oxide with Ru(lOlO) as a function of temperature and pressure and Auger 

electron spectroscopy (AES) to identify the atomic species present on 

these surfaces. Results were obtained at reactant partial pressures in 

the range from 10 ^ to 10 ^ torr and substrate temperatures from -25 

to 950° C. The interaction of molecular oxygen with the surface was 

also examined. A qualitative correlation exists between the observed 

structures and the reported enhancement in the catalytic activity of 

cuppcrted ruthenium after rat.alyst had been uretreated with oxygen 

(2-4, 6). 
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AUGER ELECTRON SPECTROSCOPY 

Historical Development 

In 1925 Pierre Auger (12) published a paper reporting the observa­

tion of "tertiary electrons" in a Wilson cloud chamber during the 

excitation of photoelectrons from noble gas atoms by monoenergetic 

X rays. These "tertiary" or Auger electrons originated from the same 

atoms as the photoelectrons, had an isotropic distribution and were 

emitted with energies characteristic of the atom from which they 

originated, independent of the energy of the x rays. Auger, interpreting 

the origin of these electrons in terms of the Bohr model of the atom, 

postulated the existence of a completely new mechanism for energy 

exchange between electrons and radiation. The Auger electron received 

its energy in a radiationless transfer from an outer shell electron which 

dropped to the core level vacancy left by the ejected photoelectron. The 

transferred energy .is roughly the difference in energy between the two 

levels involved and thus characteristic of the atom. An atom ionized in 

a core shell can relax by either emission of an x ray or by the Auger 

process. His results provided confirmatory evidence for the Bohr 

model. 

The first theoretical calculations on the Auger effect were performed 

by Wentzel (13) in 1927. He computed the nonrelativistic Auger transi­

tion rate using first-order, time-dependent perturbation theory with the 
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Coulomb interaction between two electrons regarded as the perturbation. 

The same transition rate has been obtained by regarding the phenomenon 

as an internal absorption of radiation. In the relativistic limit, the only 

method available for handling the problem is to consider the electro­

magnetic field created by the transition of the first electron as the 

perturbation; however, the nonrelativistic form of this rate expression 

is identical to the radiationless-transition model rate. It is immaterial 

whether the phenomenon is regarded as internal conversion of a photon 

or the result of direct interaction between electrons. 

The theoretical Auger transition rate at this level of approximation 

is independent of the nuclear charge, Z; and the x ray emission rate 

4 
varies as Z . As a result, Auger emission is favored over x ray 

emission for low Z elements. Estimated values of the K-shell Auger 

yield range from 0. 9917 for oxygen to 0. 0325 for uranium. Early 

interest in the Auger effect was aimed at explaining the variations in 

X ray fluorescence yields. The role of the Auger effect in atomic, 

nuclear and elementary particle physics has been reviewed (14, 15). 

The exploitation of the Auger electron's energy being very precisely 

characteristic of the parent atom for material analysis was hampered 

by the lack of high vacuum and electronic techniques necessary for 

measuring electron energies. The first work on electron-excited Auger 

spectroscopy was reported by J, J. Lander (16) in 1953. Using an 
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electrostatic sector analyzer, he observed Auger peaks of a number of 

metals and oxygen and changes in the spectrum due to oxidation. He 

estimated the escape depth of Auger electrons from a surface at ten 

atomic layers. Lander concluded that the method offered a positive 

means of analysis where the material of interest was present to a depth 

of several atomic layers and the high vacuum condition was not 

prohibitive. 

This interesting technique for surface analysis was not immediately 

capitalized upon since the secondary-electron emission from an electron 

bombarded surface contains much more information than just Auger 

currents. The extraction of small Auger signals from a very much 

larger background was a problem. This problem was finally solved by 

L. A. I-Iai iis (17) i \ \  1967. He used an instrument similar ro that used 

by Lander (16), but he electronically differentiated the secondary 

emission spectrum which enhanced the Auger features. The method 

of differentiating with respect to energy permitted significant noise 

reduction and increased signal gain. Shortly thereafter Weber and Peria 

(18) obtained the same type of spectra from a low-energy electron 

diffraction (LEED) apparatus by taking second derivatives of the collected 

current. Their demonstration that Auger spectroscopy could be done in 

existing apparatus already in the hands of workers vitally interested in 

surface studies insured its immediate use and rapid improvement. One 
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of the major advances in technique was the application of the cylindrical 

mirror analyzer (19). The instrument has high transmission and high 

energy resolution thus permitting rapid analysis with low electron 

currents. 

The Secondary-Electron Energy Distribution 

Auger electrons are found among the various secondary electrons 

ejected into the vacuum under the influence of a beam of incident 

electrons of energy E^. In order to observe the Auger electrons, it 

is necessary to measure the electron energy distribution, N(E). A 

typical N(E) versus E curve is shown in Fig. 1. Three major features 

Auger electrons 

Fig. 1. Typical secondary electron energy distribution, N(E), of a 
solid produced by a primary electron beam of energy E^. 
Auger electrons appear as small bumps. 
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are visible: (1) a sharp peak at the incidence energy due to elastically 

reflected primaries, (2) a large peak near E = 0 and (3) an intermediate 

energy region with relatively few electrons. The relative intensities of 

the various features can be understood by examining the nature and 

magnitude of the elemental scattering processes experienced by the 

incident electrons. 

The incident electrons can interact with the valence electrons)in the 

solid. The electrons can lose energy to bulk as well as surface plasmons 

and to other types of excitation of the valence electron fluid like single 

particle intraband and interband transitions. The valence electrons in 

the solid which are excited by the incident electrons often have sufficient 

energy to escape into the vacuum. The "true secondary" peak near E = 0 

results from the cascade-loss processes of the incident electrons which 

create a large population of low-energy (E <25 eV) electrons. Inelastic 

total scattering cross sections for a 10 eV energy loss for E^ = 10Q0 eV 

- 1 8  2  
are on the order of 10 cm (20), 

The elastic peak at E = is caused by the back scattering of the 

incident electrons from the ion cores in the solid. It is the intensity 

and angular dependence of this peak which is measured in LEED. 

Electron-ion core elastic scattering total cross sections are on the 

. , _ - l 6  2  
order of 10 cm . 

Incident electrons can create core holes in the atomic constituents 
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of the solid. This interaction produces an ion of energy E^, where E^ is 

the binding energy of the core electron, and two electrons the sum of 

whose energies is E^ - E^ . The ejected core electrons produce an ion­

ization edge in N(E). The core holes can be filled by the Auger process, 

but the number of Auger electrons is very small because the maximum 

" 2 
probability of creating a core hole scales roughly as E^ (cross sections 

-20  2  
on the order of 10 cm ) and this probability is further attenuated by 

the possibility of x ray fluoresence. 

Technique of Obtaining Electron-Excited Auger Electron Spectra 

The initial ionization of core electrons required for the Auger process 

is accomplished by bombarding a solid in ultrahigh vacuum with high 

energy electrons = The electrons emitted from the sample are collected, 

and their energy distribution is determined by an energy analyzer. A 

variety of energy analyzers are presently in use, but only the retarding 

potential analyzer will be discussed. A generalized analyzer and its 

associated electronic components are shown in Fig. 2, This analyzer 

has two retarding grids which are connected together and which are 

shielded from the sample and the collector by grounded grids. The 

retarding potential applied to these grids is slowly swept through the 

range 0 to -V^ where e |V^| = E^, the energy of the incident electrons. 

The total current collected when a potential v' is applied to the retarding 

grids consists of all electrons with kinetic energy greater than 
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Fig. 2. General electronic circuit arrangement for Auger electron 
spectroscopy using hemispherical electron optics. 



www.manaraa.com

10 

E' = elv'+ 4'g (see Fig. 3) and is given by the integral: 

TT 

I(E% E ) = ° N(E)dE . ( 1 ) 
E' 

o 

Consequently N(E) can be obtained by taking the first derivative of the 

collected current. Auger electron currents in I(E' , E^) occur at fixed 

energy values characteristic of the parent atom. Changes in the primary 

beam energy do not alter the energy values; although such changes may 

alter the intensities of the Auger currents due to associated variations 

in ionization cross sections. 

In practice the collected current is electronically differentiated by 

external cur cuits. The first step in this process, which was first used 

by Leder and Simpson (21) in 1958 and which has come to be known as 

potential modulation differentiation, is to superimpose a low level ac 

modulating signal upon the dc potential applied to the retarding grids. 

This signal is supplied by the oscillator and is of the form ksinCUt. 

Provided that k «e j V' |, the collected current may be represented by a 

Taylor series expansion: 

2 2 
) = IQ + (^)g,ksinWt + + cos2£0t) + • • • . ( 2 ) 

The first derivative of the collected current is the coefficient of the 

leading term in the series expression for the ac component with frequency 

CO. The rate of convergence of this series can be adjusted and the leading 

term emphasized by using a sufficiently small modulation amplitude k. 
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Taylor (22) has analyzed this problem for the case of N{E) given by a 

Gaussian function. As the modulation amplitude increases, the ampli­

tude of the fundamental ac signal becomes increasingly less than 

proportional to the coefficient of the leading term, kN(E). The error 

is approximately 14% when the peak-to-peak amplitude is equal to the 

full width at half-height of the Gaussian peak. Similarly the amplitude 

of the second harmonic signal is slightly less than proportional to the 

coefficient of the second term in Eq. (2). The error is almost 20% for 

a peak-to-peak amplitude equal to the full width at half-height. 

It is the function of the preamplifier and the lock-in amplifier to 

detect and amplify the selected ac component. In order to obtain N(E), 

the input circuit of the preamplifier is tuned to CO, The total output 

consists of a signal that i? strirrly proportional to the ac signal at the 

input, and this signal is fed to one channel of the lock-in amplifier. The 

lock-in amplifier performs synchronous or in-phase detection and 

amplification by comparing the phase of the signal from the preamplifier 

lo the phase of the oscillator signal which is supplied to the reference 

channel. As a result, only that portion of the collected current which is 

in phase with the ac signal on the retarding grids is detected and 

amplified, i.e., only those electrons with kinetic energies near e |v' j 

are counted by the external circuitry. The output of the lock-in 

amplifier is fed to the Y axis of a recording device, and the X axis is 
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driven by a dc potential proportional to v'.  The resulting X-Y plot is 

proportional to the secondary electron energy distribution. 

The Auger current at a particular energy E has to compete with the 

fluctuation or shot noise (the statistical noise associated with the 

measurement of discrete particles) from all electrons capable of over­

coming the retarding voltage. This leads to rather poor signal-to-noise 

characteristics, which limits the speed at which the spectrum can be 

generated. To enhance the weak but relatively sharp features associated 

with the Auger electrons, the higher frequency spectral components of 

the collected current are amplified selectively by measuring its second 

derivative with respect to energy. The background is suppressed since 

it is a relatively slowly varying function of energy as compared to the 

Auger features. The second derivative spectrum ia uuLalueu by tuning 

the phase-sensitive detector to 20). An Auger feature in a dN(E)/dE 

versus E plot is characterized by prominent positive and negative peaks. 

Interpretation of Auger Spectra 

Characteristic energy 

An energy level diagram of Auger electron emission for a core level 

valence-valence transition is shown in Fig. 3. The kinetic energy of the 

ejected electron depends on the positions of the core hole and of the two 

valence band holes. If the core hole recombination is with an electron 

in a state of energy in the valence band and the Auger electron is 
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spectrometer 

sample 

1 

T 
'////////// 7//i 

spec 

V 
R 

Fig. 3. Energy level diagram of Auger electron emission. The initial 
state includes a vacancy in a core level of binding energy E^. 
All energies are relative to the grounded Fermi level of 
the sample. 
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ejected from a state also in the valence band, then the energy of 

the Auger electron relative to the grounded Fermi level of the sample is: 

' ^ 2  •  '  

In the measurement of the characteristic energy with a retarding 

potential analyzer, the characteristic energy is equated to the 

retarding potential plus the analyzer work function: 

A typical Auger peak in a second-derivative spectrum has a large 

negative peak, an associated positive peak and possibly neighboring fine 

structure. The negative part is almost always expected to be sharp and 

prominent, and for this reason most workers have adopted the convention 

of assigning the energy of the minimum of the negative portion to that 

Auger transition. 

Auger energies are almost universally designated in terms of an 

WXY notation where the letters are the x ray nomenclature for the 

energy levels of the inriized core electron, the electron which fills the 

core hole and the ejected electron respectively. For example, a Ru 

transition would be produced by the removal of an 

electron from ths level, the filling of this hole by an electron from 

the level, followed by the ejection of an electron from the Ng level. 

The energy difference can be found in x ray and photoelectron 
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energy tables, but the energy known since, after Auger 

ejection, the system is doubly ionized and x ray energy levels do not 

adequately describe the allowed final states of the system. The kinetic 

energy can be semiempirically estimated by assuming that should be 

approximately equal to the single-ionization energy for the corresponding 

level of the next heavier element: 

€^(Z) = €^(Z + A) (5) 

where Z is the atomic number and A has been found empirically to be 

between 0. 5 and 1.0, A discussion of the methods employed to theoret­

ically calculate Auger energies can be found in a recent review by 

Chang (23). 

For a heavy element the L-shell Auger spectrum alone consists of 

hundreds of lines, the energies of which are not susceptible to precise 

first-principle calculations. Serious ambiguities arise in the identifi­

cation of Auger transitions for all but the lightest elements. Elemental 

identification is generally based on matching spectra against "standard" 

plots taken from samples of known composition. 

Chemical shifts 

There have been numerous reports of shifts in the positions of Auger 

peaks with changes in the chemical environment of the atom. Shifts in 

energy of atomic levels due to environmental conditions of the parent 

atom are known as "chemical shifts. " These shifts can be caused by 
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changes in the valence band density of states or by core level shifts 

caused by a net exchange of electrons among atoms in a solid (24). 

Chemical shifts are difficult to measure and interpret using Auger 

spectra. They are often small (:S 1 eV) and cannot be accurately 

measured using the relatively broad Auger peaks. Since the observed 

energy of an Auger electron depends on the binding energies of three 

levels, any or all of them may be shifted. As a result, if and 

(where Ay is the shift in the doubly ionized state) are the chemical 

shifts of the W, X and Y levels, the Auger peak will be shifted by: 

Since only AE is measured, the individual A. are not known. 
1 

Peak shifts observed in Auger spectra may serve to characterize 

differences in chemical environment even though they do not yield 

readily to quantitative analysis. Wagner (25) has proposed the use of an 

Auger parameter, Ci, defined as the difference in kinetic energy between 

an Auger line and a photoelectron line. This quantity is unique for each 

compound and can be measured more accurately than absolute line 

positions. Data on sodium showed a total spread in a of 9 - 6 eV between 

isolated Na atoms and Na metal with the Na salts occupying a 3. 4 eV 

range precisely in the center. 

( 6 ) 
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Line shape 

Auger electron spectra from free atoms reveal inherent Lorentzian 

line shapes due to the natural widths of the initial and final states. Auger 

spectra from solid surfaces are more complex due to band structure 

effects. The line shape for a core level valence-valence transition is 

related to the density of valence band states. The energy distribution of 

Auger electrons must take into account all possible combinations of 

energies ç ^ and (see Fig. 3) allowed by the conservation of energy, 

as expressed in Eq. (3). The transition density T(E^) is given, in this 

simple picture, by the self-convolution of the valence band density of 

states; 

This expression will be broadened by the energy width of the core level 

which is a consequence of the finite lifeLime T of the core hole. From the 

uncertainty principal the width is A /T ; as a result, the initial core level 

must be described by a state distribution function which has the form of 

a Lorentzian. For the narrowest core levels, the energy corresponding 

to this finite lifetime is about 0. 2 eV. The width of a core level valence 

valence Auger line is twice the occupied width of the valence band. 

T(E^) = ' N^(E' )N^(E - E' ) dE' ( 7 ) 

where 

( 8 ) 
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Typical Auger lines are from 3 to 20 eV wide. 

Since the valence band is sensitive to the chemical environment of an 

atom, any redistribution of electrons due to differences in the bonding 

may be reflected in a change in the shape of the Auger peak. Auger 

spectra for atoms in different chemical environments may serve as 

characteristic "fingerprints" of the type of chemical bonding. Haas, 

Grant and Dooley (26) observed changes in the line shape of the carbon 

peak in second-derivative spectra among CO on W(112), W^C, graphite 

and diamond. Hooker and Grant (27,28) compared the Auger spectra 

of gaseous CO and CO adsorbed on Ni(llO) and found similarities 

between the oxygen peaks which they concluded indicated weak bonding 

of nondissociated CO to the surface. Changes in line shape with chem­

ical environment have also been repc'r'tefî for silicon and sulphur (23). 

The measured Auger line shape differs from the "actual" line shape 

due to the cumulative effec.r.s of finite instrument resolution plus inelastic 

scattering. Energy losses to single electron and plasmon excitations 

will spread the Auger electrons ever a range of energies usually 

producing a broad satellite peak centered some 10 to 20 eV below the 

parent peak. A fundamental problem in line shape analysis is the effect 

of the instrument on the recorded data. The degrading effect of the 

instrument can be treated analytically through the use of an instrument 

broadening function. A measured spectrum, S(x) , can be written 
meas 



www.manaraa.com

19 

as the convolution product of the "actual" spectrum, S(x), with the 

instrument response; 

' ' 

where T(x) is the function the instrument would record for a hypothetical 

signal in the form of a Dirac delta function. 

When the potential modulation method is used to obtain a derivative 

spectrum, the irstrument response function depends on the amplitude of 

the oscillation. Park and Houston (29) have derived analytical expres­

sions for the broadening functions for the first and second derivative 

spectra obtained with retarding grid analyzers. These functions do not 

include the effect of the finite analyzer window. Mularie and Peria (30) 

have shown that the elastically scattered peak and its associated 

characteristic loss features provide a satisfactory instrument response 

function to correct for both the instrument and inelastic interactions. 

Intensity 

The Auger current, i  ̂  (E ), per unit area of sample arising from 
jr\ O 

incident electrons of energy E^ will bear the approximate proportional 

relationship: 

i^(E^) a:i(E^)a(E^,Eg)y(E^)r(E^) ( 10 ) 

where i(E ) is the incident flux of electrons, or (E , E ) is the cross 
o o B 

section for inner shell ionization of the appropriate level (binding energy 
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Eg), y(E^) is the probability that an excited atom will decay through an 

Auger transition of energy E and T(E ) is the effective number of layers 
A A 

of the solid contributing to the Auger current. The product notation is 

only symbolic because each factor is not independent of the others but is 

a complicated function of many variables. The effect of the analyzer, 

e. g. , geometry of the analyzer aperature, the transmission and the 

detector sensitivity, has not been explicitly included. 

Determination of the effective ionization current is very difficult 

since not only incident primary electrons but also backscattered primary 

electrons produce ionization events. Both elastically and inelastically 

scattered primaries can contribute to the ionization frequency as long as 

their energies exceed E^. The energy distribution of backs cattered 

primaries, while in the solid and prior tc their last potential ionization 

event, is unknown, but these electrons may produce up to half of the 

Auger intensity. The backscattered contributions to the Auger yields for 

pure silicon and silver have been measured by Gallon (31) by an iterative 

procedure which took account of the measured energy dependence of the 

Auger yield and the measured energy distribution of escaping backscat­

tered electrons. He found the backscattered contributions were 30% for 

silver and 20% for silicon. The backscattering factor is a function of 

both atomic number and primary beam energy. Calculations by Bishop 

and Riviere (32) predict a nearly linear increase in the backscattering 
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factor with increasing atomic number up to about Z =30. They also 

show a monotonie increase in this factor with increasing incident electron 

energy. Up to 50% of the Auger yield may be produced by backscattered 

electrons for heavy elements (Z> 30) and E /E equal to ten. 

The electron impact ionization cross section, cr (E^, E^), can be 

characterized in the following manner. As the primary beam energy is 

increased from zero, the cross section remains zero until the beam 

energy reaches the binding energy of the level in question. Above 

E^/Eg = 1 the calculations of Bishop and Riviere (32) show that the cross 

section should increase very rapidly to a maximum near E /E » 3 and 
o B 

then begin to decrease very slowly. However, primary electrons create 

secondaries, some of which have E>E , and which can cause further 
B 

ionization evenla, Tliebe aecoudaries iiicrease up to a point wit&i 

increasing E ; and this factor increases the ionization probability. The 

maximum ionization probability has been observed experimentally to 

occur near E /E„« 6. Since core level ionizations are atomic in nature, 
o B 

ionization cross sections for a given element sub shell should be constant, 

irrespective of the chemical environment of the element. 

Following the ionization event, two processes compete in the 

de-excitation scheme; Auger electron emission and x ray fluorescence. 

The trend is to heavily favor the Auger process in events involving core 

level binding energies less than a few kilovolts (15). Since Auger 
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transitions can occur through several possible channels after ionization 

of a particular core level, the proportion of the total current in each 

peak must be determined. 

The most important factor relating the Auger current to the popula­

tion density of a particular element is the effective number of 

layers of a solid contributing to the Auger current. Only those ejected 

electrons which do not lose energy by inelastic scattering on their way to 

the surface will appear in the spectrum at their original characteristic 

positions. Electron-electron interactions result in strong inelastic-

collision-induced attenuation of the Auger electron intensity. The surface 

sensitivity of Auger electron spectroscopy is due to this inelastic colli­

sion damping. The magnitude of this damping is a function of the 

2.Tid tb.ç snsrgy of tîiç çlçctron ?.nd is ind'?p'?nd.0nt of 0 

primary beam energy. 

The attenuation of Auger electron intensities due to inelastic scatter­

ing of the escaping electrons is generally treated as having an exponential 

ucpenueiiCô on rnatcrial thicivucss. As a result, the effective sainplirig 

depth can be parameterized in terms of the single variable X(E^), the 

escape depth, which is the path length for which an electron with energy 

E^ has a probability equal to 1 - e ^ of being inelastically scattered. 

Escape depths have been estimated empirically by noting the attenuation 

of a characteristic substrate Auger signal as an overlayer of a particular 
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material is made to increase in thickness. Brundle (33) has tabulated 

many of the experimental determinations of X(E^). Generally the escape 

depth has been observed to have a minimum of a few angstroms near 

100 eV and to increase approximately as from 100 to 2000 eV. A more 

complete discussion of escape depths can be found in a review by 

Powell (34). 

The lack of quantitative information regarding fundamental mechanisms 

involved in the production of Auger electrons and about experimental 

factors such as analyzer sensitivity have impaired routine quantitative 

analysis by Auger electron spectroscopy. In the absence of accurate data 

concerning the factors in Eq. (10) most investigators have employed 

empirical calibration procedures. Weber and Johnson (35) deposited 

known amounts of potassium on a clean Ge(iil) substrate and found that 

the peak-to-peak height of the K Auger transition in the second-derivative 

spectrum was a linear function of the fractional surface coverage in the 

submonolayer region. They derived a theoretical basis for this relation­

ship based upon the assumptions that neither the peak shape nor peak 

position varied with the surface coverage. Sickafus (3 6) has summarized 

a number of calibration experiments which employed a quartz crystal 

oscillator microbalance, ellipsometry, interferometry, radiotracers 

and known coverage chemisorption as the bases for determining the 

absolute surface coverages. These studies generally found a linear 
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relationship between Auger signal intensity and coverage in the submono-

layer region. Palmberg (37) has suggested that quantitative analysis 

could be accomplished through elemental sensitivity factors derived 

empirically from data on elemental standards, and he has shown that all 

elements can be assigned absolute sensitivity factors which are modified 

only by the backscattering factor which depends on the chemical environ­

ment. However, this method requires accurate data for the ionization 

cross sections, the escape depths and the backs cattering factors; 

unfortunately, these data are not presently available. A further compli­

cation results from experimental difficulties in measuring the absolute 

Auger current since the peaks are superimposed on a large background 

which varies in magnitude and shape with the chemical environment. 
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LOW-ENERGY ELECTRON DIFFRACTION 

Significant developments in the theory of low-energy electron 

diffraction (LEED) have occurred in the last few years. There is a 

widespread consensus that present theoretical models of LEED are 

quantitative in nature. The dream of surface structure determination 

via LEED which began with the classical experiment of Davis s on and 

Germer (38) in 1927 has finally been realized. The diverse approaches 

proposed at the beginning of the development of LEED theory in the last 

decade are converging gradually into a few standardized methods of 

theoretical analysis. The modern mathematical models of electron 

solid scattering are apparently adequate for quantitative surface 

structure determination, but the systematic applications of modern 

theoretical analyses to interpret suitable comprehensive data are still 

in their infancy. 

Introductory material concerning the theory and the practical 

application of LEED to the study of surfaces can be found in the previous 

work done in this laboratory by Summers (39). The configuration of the 

diffracted beams and their variations in intensity with incident electron 

energy and angle of incidence can be measured experimentally. The 

only information conveyed by the configuration of the beams is the 

translational symmetry parallel to the surface of the two-dimensional, 

geometrically-equivalent layers of atoms that comprise the solid. 
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Determination of the unit cell structure within each of these layers and 

of the packing sequence of the layers relative to each other requires 

analysis of the diffracted intensities. In order to perform intensity 

analysis, a rather complete theory relating the intensities to the micro­

scopic parameters, e.g., atomic positions and thermal motions, which 

characterize the surface must be constructed and then appropriately 

simplified and reduced to computational algorithms suitable for 

analysis of measured intensities. 

All presently employed LEED models are based upon the hypothesis 

that the ads orbate-sub strate system forms an atomically flat, planar, 

single domain crystal surface. Within the confines of the planar surface 

hypothesis two fundamentally different approaches have been proposed 

to determine the atomic geometries of surfaces. The objective of 

microscopic model approaches is the development of a model of electron 

solid scattering which describes measured LEED intensities from solid 

surfaces. This approach requires a model for the electron-ion-core 

potential which causes the large angle scattering of the incident electrons, 

an expression for an optical potential to simulate the consequences of 

electron-electron interactions on elastic electron-solid scattering, i.e., 

the real part of the optical potential causes refraction of electrons at 

the vacuum interface and the imaginary part describes the removal of 

electrons from the elastic beam by inelastic electron-electron collisions, 
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and a Debye-Waller factor to describe the reduction of the elastic 

particle-ion-core scattering amplitudes by the thermal motion of the 

ion cores. Extensive sensitivity analyses (40) have established three 

major conclusions about these parameters; (1) simple overlapping-

atomic-potential models seem adequate for the purpose of surface 

structure determination to within AdwO. 1 A, (2) crude empirical models 

of the electron-solid optical potential appear to be sufficient and (3) low 

temperature (T ^ 100 K) intensity data should be used in order to separate 

vibrational and geometrical effects. The mathematical formulations of 

the various models currently in use for intensity analysis are discussed 

in more detail in the recent literature (41-43). 

The data reduction approach is based on the fact that despite the 

occurrence of strong dynamical (multiple-scattering) pueuomcûa, Loth 

model calculations and LEED intensity data exhibit unmistakable residual 

manifestations of the purely geometrical conditions for intensity maxima 

which characterize kinematical (single-scattering) analyses. By 

manipulating observed LEED intensities to enhance these geometrical 

effects while smoothing or ignoring the dynamical ones, analytical 

procedures based on kinematical concepts can be used for structure 

determination. The kinematic formulation and its extensions and the 

insights derived from that formulation have been reviewed by Webb and 

Lagally (44). 
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Questions concerning the uniqueness of the conclusions drawn from 

model calculations as well as their intrinsic precision arose when 

different analyses of LEED intensities from Ni(100)-C(2x2)-S and Ni(lOO)-

C(2x2)-0 surfaces did not lead co identical structures. Demuth, Jepsen 

and Marcus (45) examined these structures and found that both sulphur 

and oxygen sat in four-fold holes at distances of 1. 30±0. 1 and 0, 90±0. 1 A 

above the plane passing through the center of the underlying nickel layer; 

however, Duke et al. (46) calculated a distance of 1. 70±0. 1 A for the 

sulphur structure; and Anders s on et al. (47) found the best fit for an 

oxygen distance of 1. 50±0. lA, These discrepancies prompted consider­

ation of the possibility that more than one atomic geometry may be 

associated with a given surface translational symmetry. The reproduc­

ibility of the intensity data, the accurcujy with which the properties of rhe 

spectrometer were known, the completeness of the characterization of 

the surface structure by independent measurements and the dependence 

of the uniqueness of a structure on the extensiveness of the data were 

also considered as possible sources of the disagreement. The causes 

of these particular discrepancies were eventually discovered. After the 

energy scale of the experimental data had been corrected by -2. 5 eV in 

order to compensate for a contact potential difference between the 

electron gun and the collector, Duke and Lipari (48) found that a Ni-S 

distance of 1.30A provided a slightly better fit to their data. Pendry 
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(as cited in 49, 50) favored a Ni-0 distance of 0. 9 A after he had extended 

his calculations to higher energies. The apparent equivalence of the 

various computation procedures was reinforced when Van Hove and Tong 

(49) calculated nearly identical distances for O, S, Se and Te (2x2) 

overlayers onNi(lOO) as Marcus et al. (50) for the same experimental 

data. While the various computation schemes appear to be equally 

satisfactory, the problems associated with data reproducibility and 

limited data bases have been dramatically underlined. Duke, Lipari 

and Laramore (51) feel that an extensive array of low temperature data 

consisting of at least 50-70 maxima in 6-10 beams for several angles of 

incidence is necessary for an accurate intensity analysis. 
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REVIEW OF PREVIOUS RESEARCH ON THE INTERACTION OF 
NITRIC OXIDE WITH RUTHENIUM 

The requirement that nitric oxide be virtually eliminated from 

automobile exhaust has generated considerable interest in the develop­

ment of an inexpensive, plentiful and effective catalyst suitable for this 

task. After extensive studies (52, 53) of the rates of the heterogeneous 

decomposition of nitric oxide over a large variety of catalysts showed 

that this reaction was so slow that an excessive amount of catalyst would 

be necessary for the effective removal of the NO, emphasis was placed 

on chemical reduction processes which were known to be orders of 

magnitude faster than the decomposition reaction. Over a decade ago 

Sourirajan and Blumenthal (54) found that a 5-10 fold excess of either 

carbon monoxide or hydrogen or both would remove 90% of the NO from 

exhaust gases at 300° G over a CuO/SiO^ catalyst. They proposed the 

use of a two-stage catalytic converter: the first bed would be operated 

in a chemically reducing atmosphere where excess CO would reduce NO, 

air would be added between the beds and the remaining CO and hydro­

carbons would be oxidized over the second bed. However, they also 

discovered one drawback to the proposed scheme. Depending upon the 

experimental conditions, from 20 to 98% of the NO was reduced to NH^. 

This ammonia would be subsequently reoxidized back to NO in the second 

bed of an actual converter system. 
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The production of large amounts of NH^ was somewhat surprising 

since there is typically about four times as much CO as in automobile 

exhaust; and it was assumed that the major path to NO reduction would be: 

NO + CO ^N + CO^ . (11 ) 

This paradox was resolved when Jones et al. (55) found that their Pt 

catalyst was active for the water-gas shift reaction: 

CO + H^O # Hg + COg . ( 12 ) 

The hydrogen formed by this reaction efficiently reduced NO to NH^ on 

the same catalyst: 

NO + jH^ -* NH + H^O . ( 13 ) 

The water-gas shift equilibrium is an important factor in determining 

the composition of exhaust gas at fuel-rich stoichiometries. The 

equilibrium is frozen far to the left in the combustion and expansion 

processes in automobile engines, and equilibrium is not maintained as 

the gases cool. The equilibrium ratio of to CO increases dramatically 

at lower temperatures; as a result, if the catalyst can re-establish this 

equilibrium at the catalyst operating temperature, the dominant reducing 

species will be instead of CO (56). The water-gas shift reaction was 

established as the major source of hydrogen on the surface of the catalyst 

after it was found that the saturation coverage of hydrogen from adsorbed 

hydrocarbons under dry conditions was very small and that the steam 
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reforming surface reaction was slow compared to the water-gas shift 

reaction (57). 

Shelef and co-workers (1, 58, 59) have conducted an extensive study of 

NH^ formation during the reduction of NO by They have proposed a 

simple "nitrogen pairing" model to account for the variations in the 

N^/NH^ product ratio: in the formation of NH^, only one NO molecule 

need participate in a possible rate-limiting event on the surface, whereas 

for NO defixation two NO molecules are necessary. If the rate of NH^ 

formation is a linear function of surface NO concentration and the rate of 

unfixed products formation a quadratic function, a decrease in NO surface 

concentration will suppress defixation more than conversion to ammonia. 

The influences of CO and O^ on the amount of NH^ produced can be 

rationalized with this model. The observed increase in production 

with increased CO concentration can be explained by postulating that CO 

and NO compete for the same surface sites, i. e., the presence of CO on 

the surface will block the adsorption of NO. Oxygen can decrease NH^ 

production by converting CO to COg which, if it then desorbs, would 

unblock the surface. 

During the course of this study, it was observed that supported Ru 

catalysts had a higher selectivity for the formation of N^, instead of NH^, 

during NO reduction than most other commonly employed catalysts. An 

attempt was made to trace the path of the N atoms from NO molecules to 
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during the reduction of NO by on Ru/Al^O^ in order to determine 

whether ammonia was a gas-phase intermediate (59). They found no 

evidence for actual release of NH^ into the gas phase. They concluded 

that it was possible that the intermediate product might not be the gaseous 

ammonia molecule but rather partially-hydrogenated fragments which 

pair up in the same manner as during the catalytic decomposition of NH^. 

They surmised that the difference between Ru and most other catalysts 

ij that the mechanism of nitrogen formation governing ammonia 

decomposition is only operative on Ru which has the unique ability to both 

decompose and synthesize ammonia. 

Klimisch and Taylor (2) have also investigated NH^ production during 

the reduction of NO by over Pt, Pd and Ru catalysts. They were able 

to correlate cue N^/NK^ pioduct ratio with the ability of a catalyst to 

promote the decomposition of NH^. The Pt catalyst was moderately 

effective in removing NO, but considerable NH^ was produced which 

corresponded to a rather poor ability^TThe caJtaTysTl^o decompose 

Ammonia formation was fairly small and relatively coriblaut (—20%) for 

temperatures above 450° C over a supported Ru catalyst. They observed 

also that the activity of a Ru catalyst changed after it had been exposed 

to excess oxygen at elevated temperatures. This oxidized form of the 

catalyst produced only minimal amounts of NH^ for temperatures above 

500° C. The original activity could be regained by reduction of the 
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catalyst at 700° C. Even though the difference in NH^ production between 

the two states of the catalyst correlated with the difference in ammonia 

decomposition activity, additional studies (3) indicated that an ammonia 

intermediate did not appear to be involved in NO reduction over reduced 

Ru/Al^O^ and was only a minor pathway to over the oxygen-treated 

catalyst. The low NH^ yield over Ru was attributed to strong NO chem-

isorption since that would tend to increase the probability of adjacent 

N-species on the surface under all conditions. The results of 

Kobyliiiski and Taylor (5) supported these findings since they found that 

ammonia decomposition was not responsible for the high selectivity 

toward observed with Ru catalysts. 

Klimisch and co-workers (3, 4, 6) have made an extensive investigation 

of the two activity states exhibited by supported Ru catalysts. Conversion 

of the catalyst between the two states was reversible and accomplished by 

oxidizing o'r reducing the catalyst. The unique selectivity of Ru for 

reduction of NO to did not change appreciably for the two states. 

They found that the oxygen-treated catalyst was active for the water-gas 

shift reaction, ammonia decomposition and hydrocarbon formation from 

CO and H^, while the reduced catalyst was basically inert. They found 

that this "dual state" phenomenon also occurred for Pt and Pd catalysts 

as well. The catalytic activity of a supported Ru catalyst did not depend 

upon the formation of ruthenium dioxide or the degree of metal 
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dispersion. They suggested that the transformation to the more active 

oxidized catalyst state involved a reconstruction of the surface and/or 

destruction of inhibiting metal-support interactions. 

The complexity of the catalytic behavior of metallic ruthenium was 

underscored by the recent study of Voorhoeve and Trimble (60). During 

their study of the reduction of NO by a mixture of CO, H^O and CO^, 

they found that there were five reproducible states of the catalyst with 

characteristic conversion patterns. There were states analogous to the 

two previously reported plus another reduced state formed by reduction 

with at 600° C which was active in the water-gas shift reaction and did 

not promote formation above 500° C. The other activity states were 

formed by exposing a fresh catalyst to air and by treating a catalyst with 

LJ . 1. lie y LiiCLL 1 iX\^ W X p d WIJ. XllUW HiU. C Lt* XC*\.,V, VV 

responsible for the high NH^ production and low NH^ decomposition 

activity at temperatures above 500°C associated with the previously 

reported reduced state of the catalyst. Oxygen treatment was assumed 

to remove the nitrogen from the surface and replace it with some oxygen. 

Modern surface measurement techniques have only recently been 

applied to the NO/Ru system in attempts to identify the chemisorbed 

species present on the surface during the reduction of NO. Ku, Gjostein 

and Bonzel (8) employed LE ED, AES and thermal de sorption spectroscopy 

to study the chemisorption of NO on a Ru(lOlO) single crystal sample. 
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The experimental evidence strongly favored an adsorption model in which 

NO dissociatively adsorbed into separate nitrogen and oxygen phases. 

Once the surface was saturated with the dissociated NO phase, further 

NO adsorption occurred into a molecular state. The nitrogen phase was 

unstable at temperatures as low as 200° C. The N^-selectivity of Ru 

catalysts was attributed to the ability of Ru to dissociatively adsorb NO 

and to the short residence time of N adatoms at elevated temperatures 

which inhibited the formation of surface complexes with or CO which 

could eventually lead to NH^ formation. This investigation was followed 

by an ultraviolet photoemission study (9) of NO adsorption on Ru(lOÏO) 

and Pt(lOO). For NO on Pt a UPS spectrum characteristic of molecular 

NO was identified; and the spectrum for Ru clearly indicated dissociation 

of NO inlu aLoiiiic N and C. Tor high NO exposures the UPS spectrum 

showed evidence for molecular NO in addition to the dissociated species. 

The low temperature production of NH^ over Ru and the copious produc­

tion of NH^ over Pt at all temperatures were attributed to the presence 

of molecular NO on the surface. 



www.manaraa.com

37 

EXPERIMENTAL 

Purpose of Experiments 

Numerous kinetic studies have found that supported Ru catalysts 

exhibit high selectivity for the reduction of NO to N^. This discovery 

is not surprising in view of the unique chemistry of Ru with nitrogen 

ligands (61). The strong Ru-NO bonding as well as the remarkable 

interactions of N^ with Ru are consistent with the N^ selectivity. While 

the characterization of the simpler NO/Ru gas-solid adsorption system 

by ultrahigh vacuum techniques has produced a reasonable explanation 

for the observed selectivity, i. e., the ability of Ru to adsorb NO dis-

sociatively and the instability of N adatoms at moderate temperatures, 

these sti'dies nave shed no light upon fcVie complex variaLlùns in catalytic 

activity with catalyst pretreatment. 

A primary aim of the LEED/AES approach to catalysis is to find 

correlations between structure and catalytic activity, because the 

efficiency of a catalyst is related directly to the surface atomic arrange 

ment. Monitoring the surface with LEED allows the existence of 

potentially important catalytic processes such as order-disorder 

transitions at critical temperatures, segregation of new phases and 

island growth to be established. Catalysis may proceed directly above 

a reconstructed sublayer which then acts as the actual catalyst rather 

than the undisturbed substrate. Previous work in this laboratory on 
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the NH^/W system has demonstrated that the steady-state decomposition 

of NH^ at elevated temperatures and pressures proceeded on ordered 

surface structures not previously detected under milder conditions (3 9). 

In order to determine the possible existence of similar catalytically 

active ordered surface phases for the NO/Ru system, NO was allowed 

to interact with Ru in a steady-state manner at reactant partial 

- & 
pressures s 10 torr and temperatures s 950° C. The structures 

resulting from the interactions with oxygen were also determined. 

These experiments were performed on a Ru(lOlO) single crystal 

sample. The (10Ï0) plane (see Fig. 7c) was chosen for a variety of 

reasons. It is a fairly close packed face (8. 6 x 10^^ atoms/cm^) and 

should have a low surface free energy and, thus, good thermal stability 

to rearrangement or disordering. This surface has a fairly open 

structure whose dominant feature is the troughs than run parallel to the 

TOIO] direction. These troughs should play a significant role in 

adsorption and surface diffusion processes. The (1010) plane of a hep 

metal is very similar to the fee (110) surface (they differ in coordination 

numbers of the surface and second-layer atoms), and there have been a 

large number of adsorption studies reported for these surfaces. A 

LEED/AES study of NO on Ru(lOÏO) at low temperatures and pressures 

has been published (8) which provided a means of checking the char­

acteristics of the experimental apparatus against those of other 
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investigators outside this laboratory. 

Experimental Apparatus 

The experimental studies were performed in a pyrex ultrahigh vacuum 

chamber which contained Physical Electronics 4-grid LEED optics and a 

quadrupole mass spectrometer. The system was pumped with anion 

pump, and the base pressure after bakeout was ~2 x 10 torr. The 

apparatus has been described in detail elsewhere (39). 

The single crystal Ru sample used in this study was cut from a zone 

refined single crystal supplied by MRC Corporation. It was orientated 

using Laue x ray techniques and cut to expose a (1010) plane at its 

surface. The sample disc was mechanically polished to a mirror finish 

on both sides. The final thickness was /=-•!. 5 mm; the total surface area 

was 1. 1 cm^. The sample was spot-welded to a 0. 46 mm diameter 

tungsten wire which in turn was welded to the heavier support lead of a 

glass press seal. The support lead could be immersed in liquid nitrogen 

which enabled the eamnle to be cooled to -50° C. The sample could be 

heated by electron bombardment on its rear surface. Temperatures 

were measured using a W/Re5%- W/Re26% thermocouple (0°C reference 

junction) spot-welded to the back of the crystal. 

The nitric oxide (99%) was obtained from Matheson, It was vacuum 

distilled in order to remove volatile contaminants and then transferred 

from a liquid-oxygen cooled cold finger into a breakseal ampule held at 
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liquid-nitrogen temperature in order to prevent the transfer of less 

volatile nitrogen oxides. Mass spectral analysis of the purified NO 

showed no detectable impurities. Oxygen and hydrogen were obtained 

from Ag and Pd-Ag25% leak diffuser s. 

Auger Spectrometer 

The Auger electron spectrometer used in this study was a hybrid 

instrument. The Physical Electronics LEED controller was used to 

operate the electron gun, and the analyzer section of the optics (grid 

meshes and fluorescent screen) was controlled by a Vacuum Generators 

Auger Electron Detector. The only modification necessary to interface 

the LEED and Auger instrumentation was to disconnect the screen and 

the retarding grids from the LEED electronics and to connect them to 

the preamplifier and the programmable high-voltage power supply. 

A schematic diagram of the circuit used to obtain the differential 

Auger spectrum in shown in Fig. 2. The potential on the retarding grids 

is supplied by a programmable high-voltage (0 - 2.5 keV) power supply. 

The programming voltage is a linear ramp supplied by an integrating 

circuit. A sinusoidal modulation from a low-distortion oscillator is 

superimposed on the retarding potential by a transformer. The oscil­

lator is tuned to 4. 75 kHz for the first-derivative spectrum and to 2. 3 75 

kHz for the second. In order to achieve a high input resistence and 

hence a good signal-to-noise ratio and also a low order of spurious 
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response to unwanted signals, the input transformer of the preamplifier 

is tuned to form a bandpass filter. The inductance of the transformer is 

in parallel with the distributed capacitance (~300 pf) of the collector 

circuit, and this LC tank selects that portion of the collected current 

that varies at the desired harmonic of the modulation signal. At 

7 
resonance the impedance of the tank is purely resistive and is about 10 

ohms. 

The LEED electron gun is capable of producing a monoenergetic 

beam of electrons with kinetic energies up to 1.5 keV and currents of 

~10 - 100 /ia, A primary beam energy of 1. 4 keV was normally used. 

The beam current should be as small as possible in order to minimize 

any destructive interactions between the incident electrons and the system 

under study, but it iviusl. be large enough to generate a dctectablc signa.1. 

A beam current of 50 /ia proved to be about the minimum current that 

would produce an acceptable signal-to-noise ratio for submonolayer 

coverages of oxygen and nitrogen. 

The increased sensitivity of the derivative spectrum over the total 

yield is purchased at the expense of bandwidth. The bandwidth, which is 

essentially the reciprocal of the measurement time constant, is limited 

by the statistical noise associated with the measurement of discrete 

charges, i, e., shot noise. Since shot noise is proportional to the 

bandwidth (62), the signal-to-noise ratio can be improved by decreasing 
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the bandwidth, i.e., increasing the measurement time. The spectro­

meter was normally operated with a bandwidth of 0. 1 Hz which limited 

the rate at which the spectrum could be generated to the order of 

1 eV/s. 

The sensitivity of a surface analytical technique is stated properly 

in terms of the smallest fraction of a monolayer on which a meaningful 

measurement can be made. It is limited by the background against which 

the signal appears. If the peak-to-peak height in the second-derivative 

spectrum is assumed to be a linear function of the surface coverage, 

then the sensitivity of an Auger spectrometer can be estimated by 

comparing the average background level to the peak height for a known 

adsorbate coverage. If a signal-to-noise ratio of two is arbitrarily 

chosen as the limit of deiectabilily, lue etsLiiiialcu aeiiolliviuy of this 

instrument under normal operating conditions is 0. 04 monolayers of 

oxygen or nitrogen adatoms. 

If a monoenergetic beam of electrons of energy E is injected into the 

spectrometer, a peak of full width at half-height, AE, is recorded in the 

spectrum due to various instrumental limitations. The ratio E/AE 

defines the resolution, while its reciprocal expressed as a percentage 

is referred to as the instrumental linewidth (ILW). Limitations on the 

resolution may be divided into two groups, those that are proportional to 

electron energy (AE/E = const) and those that are independent of electron 



www.manaraa.com

43 

energy (AE = const). The former group includes: (1) potential variations 

across the space between the wires of the meshes, (2) deviations of the 

grids from ideal spherical geometry and (3) effects of finite beam size 

and improper positioning of the sample. The latter group consists of: 

(1) the energy spread of the primary electrons, (2) stray magnetic 

fields and (3) the ac modulation voltage on the retarding grids. 

The resolution of this instrument at various values of electron energy 

was determined by recording the elastic peak in the N(E) spectrum 

ENERGY (eV) 

Fig. 4. Experimental determination of the instrumental line width 
(AE/E X 100%). The full width at half-height of the elastic 
peak in the N(E) spectrum (AE) was measured at various 
primary beam energies (E). 
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(obtained by tuning the spectrometer to the fundamental component of the 

modulation frequency) and then measuring the full width at half-height 

(see Fig. 4). The observed ILW is approximately 1% for electron 

energies between 300 and 1400 eV. The incident beam is very nearly 

monoenergetic since the energy spread is on the order of 3/2 kT or 

about ±0. 3 eV for a tungsten filament at 2200° C. The spectrum was 

taken with an ac modulation amplitude of 0.4 volts; and since, according 

to Park and Houston (29), the N(E) spectrum is smoothed by an 

instrument response function of the form: 

T(E,k) = ^[l - (E/k)^]^ . ( 14) 

The full width at half-height due to the potential modulation should be 

/3k or only about 0, 7 eV. The observed ILW is due mainly to field 

penetration in the grids. 
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RESULTS 

The Clean Surface 

Auger spectra taken before the sample was cleaned showed the 

presence of large amounts of carbon, sulphur and oxygen. The overlap 

of the carbon Auger peak with the very intense Ru peak made the 
2 7o 

identification of surface carbon very difficult. The following scheme 

was used to analyze the data for carbon: the peak at 278 eV was 

considered to be composed of both Ru and carbon; as a result, the ratio 

of this compound peak to a peak due solely to Ru has a minimum value 

when there is no carbon on the surface. Outgassing the sample at 1300° C 

for several days was sufficient to remove the sulphur and most of the 

carbon and oxygen; but it did not produce a clean LEED pattern. The 

LEED spots were streaked and diffuse, and there was a high background 

level. A very complex, incomplete LEED pattern usually formed upon 

cooling. 

A clean surface was finally obtained after repeated cycles of heating 

the crystal to 1200° C followed by argon bombardment and finally 

annealing below 1000° C. When the pressure in the vacuum chamber 

-3 
was increased to 1 x 10 torr with argon, the polarity on the LEED 

gun anodes reversed and the sample biased several hundred volts below 

ground, the LEED gun was capable of producing a beam of Ar^ ions 
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2 
(~ 5 /la/cm , 800 eV). The LEED pattern for the annealed surface had 

sharp spots on a dark background. The Auger spectrum of the clean 

surface shown in Fig. 5 was identical to those of Grant and Haas (7) and 

dN(E) 
dE 

1 _L 1 

100 300 500 700 

ENERGY (eV) 

900 1100 

Fig. 5. Second-derivative Auger spectrum of a clean Ru(lOlO) sample at 
500° C. The insert is a partial spectrum of the same sample at 
200° C. Primary beam energy = 1.4 keV; beam current = 50 /ia; 
sweep rate = 1.5 eV/s; ac modulation voltage = 2 v (for electron 
energies below 300 eV) and 4 v (for energies above 300 eV); full 
scale deflection = 1x10"^*^ amperes. 
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Made y et al. (10) for Ru(OOOl) samples in the Auger electron energy-

range < 300 eV. In the electron energy range from 300 to 500 eV, 

several small peaks (^2 to 3% of the intensity of the peak) were 

present. Similar "fine structure" was also observed in the two studies 

of Ru(OOOl) samples; but those peaks do not coincide in energy with 

those shown in the insert in Fig. 5. There were also features in the 

spectrum near 950 and 1120 eV. 

The dependence of the positions of the features with energies greater 

than 300 eV on the primary beam energy was examined. It was found 

that the peaks between 300 and 500 eV were independent of E^, while the 

positions of the peaks observed at 950 and 1120 eV (for = 1.4 keV) 

were linear functions of the primary beam energy. The peak observed 

at 1120 cV had an extrapolated thres'unîd energy of ~280 eV which corres­

ponds to the Mg core level binding energy of 279. 9±0. 2 eV found by 

Fuggle et al. (11) from their XPS measurements. This feature is a core 

level ionization edge. An incident electron can transfer part of its energy 

to a core eleccroa; as a result, the core clcctrcn v/ill be ejected with a 

kinetic energy (with respect to the Fermi level of the sample) of: 

E  =  E  -  E  -  Ç  ,  ( 1 5 )  
K o iJ 

where E^ is the binding energy of the core electron and € is the energy 

of the scattered incident electron. The maximum kinetic energy of the 

ejected electron corresponds to c =0. An ionization edge is generally 
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much weaker than an Auger peak since the ejected electron energies are 

distributed over all values less than the maximum. 

The energy of the feature originally observed at 950 eV was equal to 

65% of and had a threshold energy of zero. It was eventually 

discovered that this anomalous peak was caused by the interaction of the 

incident beam with the anodes of the electron gun. The position of this 

feature on the energy scale was found to be equal to the potential applied 

to the focusing anode implying that these electrons are the elastically 

backscattered component of a second incident beam of kinetic energy 

e' = e|v\ 1. The effects of this second incident beam should be 
o ' focus' 

negligible since its intensity is only about 10 ^ times the intensity of 

the true incident beam and since its elastic peak occurs outside the 

energy l ' it i igc ox xuterôst. 

Examination of Fig. 5 will show that the small peaks in the Auger 

electron energy range 300 to 500 eV have temperature dependent peak 

heights. This temperature effect was reversible and without noticeable 

hysteresis. Similar features have been ubserved for Cu and Co (62), 

Ni (64) and Ru(OOOl) (10). All of these investigators have attributed 

these peaks to the diffraction of the emitted secondary electrons. If a 

diffraction process results in a greater mean-free-path for electrons of 

certain energies and directions of momentum in the crystal, inelastically 

backscattered electrons of these energies and directions can escape 
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from a greater depth in the solid, thus accounting for an excess number 

at these energies. This is an elastic scattering process, and in the 

same manner that the relative positions of LEED beams from different 

crystallographic planes are scaled by the lattice parameters, the 

relative energies of these features should be scaled by the ratio of the 

reciprocals of the squares of the lattice constants. As a result it seems 

reasonable that the energies of the diffraction peaks observed for 

Ru(lOÏO) would not coincide necessarily with those found for Ru(OOOl) 

samples. 

Since this is a diffraction process, it will be dictated by the long 

range order of the crystal which is reduced (as far as the electrons are 

concerned in the adiabatic approximation) when the crystal is heated; 

LheiuiOic, tlic temperature depeiiidcncc cf these features should be 

characterized by a Debye-Waller factor. Laramore (65) has shown 

by assuming a spherically symmetric mode of vibration for the surface 

atoms and by using the harmonic approximation, the kinematic approx­

imation for diffraction and the high temperature limit of the Debye model 

of lattice vibrations that the logarithm of the intensity, I, of a diffraction 

peak varies approximately with substrate temperature, T, according to: 

Z 2 
d An I 12h cos (j) / w % 
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where ^ is the angle between the direction of the incident beam and 

the direction of the diffracted backscatttered electron, X is the wavelength 

of the electron and 0^ is the effective Deb ye temperature. 

According to Duke and Laramore (66) the effective Debye temperature 

will be a function of the amplitudes of vibration of the surface and bulk 

atoms, the electron wavelength and the relative scattering power of 

surface and bulk atoms. The usual interpretation of the energy depend­

ence of 0^ is that the surface atoms vibrate with larger mean square 

amplitudes than bulk atoms and that the energy dependence arises from 

the energy dependence of the electron elastic mean free path. The 

effective Debye temperature is less than the bulk value at low electron 

energies and approaches the bulk value at higher energies. 

Plots of f n (I/I ) of the peaks at 390 and 41? eV versus re^-iper^rnre 

are shown in Fig. 6. The quantity I is the intensity of the diffraction 

peak extrapolated to T = 0 K. Assuming that cj) = 0° the slopes of these 

lines yield effective Debye temperatures of 324 and 330 K. These values 

are in good qualitative agreement with the values loui'id by Ma de y et al. 

(10) from an analysis of the temperature dependence of LEED intensities 

from Ru(OOOl) and with the bulk Debye temperature of 400-426 K. The 

intensities of these features reached limiting values above 600° C. Since 

the theoretical interpretation predicts that the intensities should continue 

to decrease as the temperature is increased, it was assumed that the 
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Fig. 6. Temperature dependence of the intensities of the diffraction 
features at (a) 417 and (b) 390 eV (I^ is the intensity at T = 0 K). 

limiting intensities were due to the presence of a small amount of 

titanium on the surface; and these values were substracted from the 

intensities at lower temperatures. This assumption is based on the 

following facts: (1) the major Ti Auger peaks occur at 3 80±5 and 417*7 

eV, (2) spark-source mass spectral analysis of the Ru rod from which 

the sample was cut showed the presence of 200 ppma of Ti and (3) some 

intensity is observed at these energies even after Ar^ bombardment. 

Ma de y et al. (10) surmised that the peaks near 400 and 420 eV in their 

Auger spectra could conceivably be due to impurity Ti. Fuggle et al. (11) 
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did not find any XPS peak ascribable to Ti, but they stated that an 

amount of less than 5% of Ti would have remained undetected because 

of neighboring Ru peaks. Measurement of the true peak heights from 

the spectra is very difficult since these peaks are very small. The 

observed peak heights ranged from 15 down to 2 arbitrary units (on the 

same scale, would have a peak height of about 500 units), and the 

error bars represent an uncertainty of ±1 unit. 

LEED Pattern from Clean Ru(lOlO) Surface 

The LEED pattern from the clean Ru(lOÎO) surface at a primary beam 

energy of 38 eV is shown in Fig, 7a. The electron beam is approximately 

6° off normal incidence. The sample was not positioned at the center of 

the hemispherical optics; as a result, the LEED beams near the edges of 

the screen diverged distorting the pattern from the true rectangular 

symmetry of an hep (1010) plane. The specular beam is masked by 

visible light from the hot tungsten filament which is reflected off the 

sample onto the phosphor screen. This light appears as a bright area 

in the middle of the left side of the photograph. The other bright region 

is the incandescent filament of the LEED electron gun. Figures 7b and 

7c show the indexing of the diffraction pattern and the surface unit cell. 
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Fig. 7. LEED pattern, indexing and surface unit cell for Ru(lOÏO): 
a) LEED pattern from the clean surface at 38 eV beam energy, 
b) indexing of beams and c) surface unit cell. 
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Auger Analysis of Adsorbed Gases 

The Auger analysis of the chemical composition of the surface was 

based on the Ru , N and O peak-to-peak heights in the second 
W.D 3 ^ O O 3 JL I 

derivative spectrum. The initial, clean Ru surface was a convenient 

internal standard so that the amounts of nitrogen and oxygen adsorbed 

were represented by the ratios of the peak heights, ^^gg/Ru'^g ^.nd 

Og^^/Ru°^g, where Ru°^g was the peak height of the Ru transition at 

235 eV before any gases were admitted into the vacuum chamber. The 

use of an internal standard avoids the difficulty of absolute calibration 

which is important in this case since it is very difficult to reproducibly 

set the beam current and modulation voltage. In order to compare 

results from different runs, all data were scaled to an arbitrarily 

chosen standard Ru°^g peak height. The temperature - de pendent diffrac­

tion feature near 390 eV was superimposed on the N peak. This 
3 oo 

contribution to the intensity was estimated by measuring the height of 

the diffraction feature at 417 eV and multiplying this value by the ratio 

of these peaks for a clean surface. 

According to Brundle (33) the substrate signal intensity in the 

presence of an adsorbate can be expressed as: 

I/I^ = exp(-i/Xcosà) , ( 17 ) 

where I is the intensity for an adsorbate covered surface, is the 

intensity for a clean surface, X is the emitted electron escape depth and 
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^ is the angle of emission with respect to the surface normal. This 

expression is based upon the assumptions that the adsorbate forms a 

uniform layer, there is no contribution from backscattered electrons 

and the attentuation is of an exponential form; therefore, values of X 

computed from this expression will likely be upper limits. Since 1 can 

be expressed as 0 times the diameter of the adsorbate and 6 is propor­

tional to the oxygen peak height, the value of the intensity at zero 

coverage, can be found from the intercept of a plot of in I versus O peak 

height. Figure 8 is a plot of in of the Ru^^^ Auger peak versus 

— . \J\J 

- . 3 0  

0 10 20 30 40 50 60 70 80 90 

0 PEAK HEIGHT (arbitrary units) 

Fig. 8. Exponential attenuation of the normalized Ru(235 eV) Auger peak 
intensity (peak-to-peak height) as a function of the 0(517 eV) 
peak height (I^ is the Ru intensity at zero coverage). 
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O peak height from four sets of data. This plot was used to determine 

i.e., Ru°^g, from measurements of I and O. The relative intensities 

for equal amounts of oxygen and nitrogen can be estimated from Eq. (10). 

Using literature values for a, assuming X E and including the 

instrumental resolution showed that the intensities should be nearly 

equal; therefore, when both oxygen and nitrogen were present on the 

surface, the abscissa in Fig. 8 was set equal to the sum of the N and O 

peak heights. 

The data in Fig. 8 are replotted in Fig. 9 as I/I^ versus O/I^. The 

0 

(I/L) 

0.80 

0.70 

0.4 0.8 

(0/IJ 
0.0 

Fig. 9. Attenuation of the normalized Ru(235 eV) Auger peak intensity 
(peak-to-peak height) as a function of the normalized 0(517 eV) 
peak intensity (I^ is the Ru intensity at zero coverage), 
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equation of the line is: 

Y = 1.004 - 0.215(0) ^ ( 18) 
o o 

In the case of the dissociative adsorption of oxygen, ^is equal to 2.80 

2 -  »  
(the adsorbed species is assumed to be O with a diameter of 2. 8 A). 

The correlation among Auger results, observed LEED patterns and 

predicted overlayer structures, which will be discussed in detail in 

subsequent sections, shows that 0 can be expressed as 0. 625(0/1^); as 

a result, Ji - 1.75(0/1^), Substituting for Jl in Eq. (17), expanding the 

exponential and setting (j) = 0° yields; 

Y = 1-0 - 1.75(^) + • . • . (19 ) 
o o 

It follows from Eqs, (18) and (19) that X equals 8,1 A to first order. 

Instead of assuming that c|) = 0° in Eq. (17), the angular dependence 

can be taken into account by considering the emission from a flat plate 

in the absence of an adsorbate. Assuming that the emission follows a 

cosine laW; the emission in the presence of a film of thickness Z can be 

shown to be given by: 

-X 2r" -1 X 
I 

T r -X -X 2r -1 -X 1 / on \ = I i e -xe +x xedx^ (20 ) 
ol Jx J 

where x = -C/ X .  The integral on the right is a tabulated function. This 

equation can be solved by iteration to give X = 11.0 A. The calculated 

values are in good agreement with the escape depth versus electron 
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e n e r g y  curve in the review article by Tracy and Burkstrand (67) which 

has X 8 A for an electron energy of 235 eV. 

LEED and Auger Electron Spectroscopy Results 

The adsorption of NO on Ru(lOlO) at 90 and 200° C was followed by 

continually recording the Ru , N and O Auger signals. Since 
6  j b  3 0 0  b  i  /  

NO will decompose on hot filaments, the ion gauge was turned off during 

these experiments, and the gas-phase NO partial pressure was 

monitored with the mass spectrometer. The sample was dosed at a 

-8 -9 
constant m/e = 30 ion current of 1 x 10 amperes («2 x 10 torr). The 

Auger beam input sufficient power (0.07 watt) and the thermal conduction 

of the crystal support lead was sufficiently small that the sample was 

held at a steady-state temperature of 160° C. Temperatures from 160 up 

to 750° C could be obtained by focusing a 1000 watt projector bulb on the 

back of the crystal, while placing liquid nitrogen in the sample support 

dewar assembly resulted in a minimum attainable temperature of -50° C. 

The adatom Auger peak heights as functions of dose time (exposure) are 

shown in Fig. 10. The ordinate of this plot is given in units of 9, the 

fractional surface coverage. Justification for this particular choice of a 

proportionality constant between peak height and 0 will be presented 

later. The nitrogen portions of these fractional surface coverage versus 

exposure curves are in excellent agreement with the results of Ku et al. 

(8) (hereafter: KGB); the ratio of the nitrogen coverages at 200 and 90°C 
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Fig. 10. Nitrogen and oxygen fractional surface coverages as functions 
of iiitric oxide exposure (^j ^q  ^ ^ 10"^ torr). 

is within 2% of the reported value. No oxygen data as functions of 

exposure have previously been reported. The initial slope of these 

curves yields a sticking coefficient of 0. 55 for nitric oxide. 

According to the model proposed by KGB, the limiting N and O signals 

at 200° C represent the saturation coverage of chemisorbed atoms, and 

the increase in these signals at 90° C is due to the adsorption of NO into 

a molecular state. The lack of any increase in the O intensity at 90° C 

can be rationalized by postulating that the oxygen in this molecular state 

is so unstable that it is rapidly desorbed under the influence of the Auger 



www.manaraa.com

60 

beam. A possible cause of this oxygen instability can be found in the 

results of an ultraviolet photoelectron spectroscopic study (9) of the 

adsorption of NO on Ru(lOÏO), It was proposed that molecular nitric 

oxide adsorbed preferentially on adsorbed N atoms forming a molecular 

structure similar to N^O which has the linear structure N-N-0. It 

seems reasonable that interaction of the exposed oxygen atoms with the 

incident electrons could result in their desorption as ions. The 

existence of these ions in the gas phase could not be verified since line-

of-sight did not exist between the sample and the mass spectrometer. 

Some justification for the supposed weakness of the N-0 bond can be 

"I 2-f 
found in the chemistry of Ru(II) ammine complexes. A I Ru(NH^)^N^O 

complex can be formed, but it is readily reduced by Cr^^ to the 

complex inuicatiiig Llicil cuOruiaalxoii Ox N^G lowers ulïc N-C uOiid 

strength (68), 

Similar behavior has been observed by Us ami and Nakagima (69) 

during their LEED/AES study of NO on W(IOO). The N and O peak heights 

increased at approximately the same rate until a monolayer had formed, 

and then the O peak began to decrease slightly while the N peak continued 

to grow until it was nearly three times as large as the O peak. This 

behavior was attributed to the electron-stimulated desorption of oxygen 

from a phase formed on top of the monolayer. Conrad, Ertl, Kuppers 

and Latta (70) stated that there was strong evidence for cloanges in the 
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adsorbate layer caused by the electron beam during their AES study of 

NO on Ni(lll); however, they did not indicate the nature of the evidence. 

This interaction between the O adatoms and the Auger beam can be 

parameterized in terms of a cross section, cr, for electron stimulated 

desorption. The rate of desorption can be expressed as (71): 

^ = -nCT$ , ( 21) 

where n is the adatom density, 0 is the incident electron flux and a is 

the total cross section. In order for there to be no net increase in the 

oxygen signal as the molecular NO state becomes populated, the rate of 

oxygen desorption must be equal to the rate of adsorption. For an 

2 
assumed beam diameter of 1 mm and a cross section that is not a 

function of the adatom density, Eq. 21 gives a total cross section of 

-20  2  -20  2  
6 X 10 cm . This value is comparable to the 1.5 x 10 cm for O^ 

- 20 2 
on W(llO) found by Musket (71) and the ~5 x 10 cm measured by 

Made y (72) foi jS^-O on W(IOO). Additional support for the existence of 

a mechanism of Auger-beam-ind"cef^ desorption of oxygen adatoms is 

found in the observation that, if the sample was dosed for twenty minutes 

with the beam off, the N and O signals were approximately equal. Oxygen 

desorption due to localized heating effects does not seem very likely 

since studies using field emission microscopy (73) and thermal 

desorption spectroscopy (8, 10) have shown that the onset of the thermal 
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desorption of oxygen from Ru occurs above 900° C. 

When the LEED pattern is observed at 200° C under the same 

experimental conditions, the sequence of ordered surface structures 

shown in Fig. 11 as seen as a function of exposure, namely: 

(1x1) -> C(2x4) -i- (2x1) 

LEED observations at 90° C indicate that with continued NO exposure, 

there is an increase in the background level and diffuse diffraction 

features begin to form near the (h, k±-|) positions. These features 

have been attributed to the presence of molecular NO on the surface. 

The adsorption of oxygen at a partial pressure of 2 x 10 ^ torr at 

200° C was followed by continually monitoring the O Auger signal. The 

fractional surface coverage of O adatoms as a function of exposure is 

shown in Fig. 12. The coverage increased linearly until 0 = 0. 2 at 

which point the rate of adsorption began to decrease until it was nearly 

zero at 8 = 0.3, In order to determine whether the Auger beam had any 

influence upon the observed coverage, the gas-phase was pumped 

away after one experimental run. The O signal decayed with a cross 

- 20 2 
section for electron-stimulated desorption of 1. 5 x 10 cm . This 

beam-induced effect was confirmed by dosing for fifteen minutes with 

the beam off. The observed coverage was nearly 20% larger than for 

runs with the beam on continuously. Unfortunately, the beam-induced 

rate of desorption is of the same order of magnitude as the rate of 
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Fig 11 LEED patterns resulting from the adsorption of NO or 
on Ru( lOiO) at T S 200°C, 28 eVbeam energy, a) (1x1) ^ 
f r o m  clean surface, b) C(2x4), c) transition state: (h.kig) 
spots have faded and (h±&, W) spots have merged, d) (2x1) 
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Fig. 12. Oxygen fractional surface coverage as a function of oxygen 
exposure - 2 x 10"^ tcrr) at 200" C. 

oxygen adsorption at low dose pressures. The dashed curve in Fig. 12 

is an estimation of the true adsorption behavior. The estimated initial 

sticking coefficient is 0. 5 which is approximately equal to the initial 

sticking coefficient for NO adsorption at the same pressure. The sat­

uration coverage was independent of temperature below 200° C and was 

approximately equal to the sum of the nitrogen and oxygen surface 

coverages from the adsorption of nitric oxide. 

The adsorption of oxygen produced the same series of LEED patterns 

as the adsorption of NO. The region between six and ten minutes in 
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Fig. 12 where the surface coverage increased very slowly corresponded 

to the completion and subsequent fading of a C(2x4) LEED pattern. The 

rate of adsorption began to increase at the point where the % order 

reflections had merged. There was no indication of the adsorption of 

oxygen into a molecular state at lower temperatures. 

After long exposures to either NO or 0^, e. g., thirty minutes at 

_ g 
1 X 10 torr, at temperatures above 400° C, a C(2x6) LEED pattern was 

observed together with the (2x1). This compound pattern is shown in 

Fig. 13c. The relative intensities of the two patterns covered the entire 

range from sharp (2x1) and very faint C(2x6) at low temperatures to 

intense C(2x6) and faint (2x1) at elevated temperatures. Auger analysis 

of these compound surfaces showed fractional surface coverages of 

oxygen adatoms in the range 0. 5 to 0. 8. There was n^ indication of uie 

presence of nitrogen on these surfaces within the limits of detectability 

(~0. 04 monolayers of nitrogen adatoms). 

The interaction between the Auger beam and the oxygen adlayer was 

described by a structure-sensitive cross section for electron-stimulated 

- 20 2 
desorption. The cross section was 6 x 10 cm for surfaces with 

0 > 0. 6, and it was approximately a factor of four smaller for surfaces 

with lesser coverages. A similar decrease in the surface coverage could 

be effected by pumping on the surface, if, after a compound surface had 

been formed, the system was then evacuated, the coverage decreased to 
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(c) W 

Fig. 13. LEED patterns resulting from the steady-state interaction of 
NO or G with Ru(lOÏO) at reactant partial pressures s 10" 
torr, 38^eV beam energy, a) T = 950° C, b) T = 750° C, c) 
T s 400° C and d) after cooling the surface shown in c) below 
200° C in NO or O^. These patterns are stable upon cooling 
below 200° C in vacuo. 
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about 0. 6 monolayers with no apparent change in the LEED pattern. The 

rapid removal of weakly bound oxygen from the C(2x6) phase of the 

compound surface made the correlation between Auger data and LEED 

observations very difficult. In order to compensate for this effect, the 

O peak height was observed as a function of exposure to the incident 

beam and then was extrapolated to time zero. The extrapolation 

procedure was very important when an oxygenated surface was cooled 

below 200° C in the presence of NO gas since there was a 1:1 substitution 

of N for 0 adatoms with little or no change in the total adatom density. 

The apparent presence of nitrogen on these surfaces was a beam-induced 

artifact. 

When a (2xl) + C(2x6) surface was cooled in either an NO or O^ 

ambient, there was a gradual lading of the f order beams, an increase 

in the background level and the eventual formation of the somewhat 

diffuse C(2x6) shown in Fig. 13d. The transition temperature ranged 

from -40 to 200° C and was a function of the fractional surface coverage 

of oxygen adatoms. This transition occurred at a higher temperature in 

an NO ambient than it did in O^. Extrapolated Auger data for the C(2x6) 

surface showed that there was no N on the surface and that the O coverage 

ranged from slightly more than 0. 5 up to 0. 85 monolayers. The order 

reflections were regenerated by heating the sample above 200° C. This 

transition has been observed to occur with no apparent change in 
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surface coverage. 

The ordered surface structures shown in Figs, 13a and 13b, i.e., 

(7x1) and C(4x8), have also been observed. The former structure was 

produced by flashing an oxygenated surface with 6 > 0. 2 to 950° C in 

vacuo for several minutes. The latter LEED pattern has been observed 

both after steady-state interaction of the sample with either NO or 

at temperatures above 700° C and after flashing a (2x1), C(2x6) or (2x1) + 

C(2x6) surface to 750° C in vacuo. Auger analysis did not detect the 

presence of nitrogen on either surface, and the maximum oxygen cover­

ages were 0.47±. 02 and 0. 28±. 02 monolayers, respectively. 

When the (7x1) surface was exposed to either NO or O^ at tempera­

tures above 400° C, the diffraction pattern began to streak in the k 

direction. A C(4xS) pattern eveiilually foriVicu. CouLiiiuecl exposure 

resulted in the concurrent fading of the C(4x8) spots and formation of 

C(2x6) + (2xl) reflections. If either structure was exposed to continued 

adsorption at temperatures below 400° C, a diffuse C(2x4) would begin 

to appear. The C(2x4) eventually transformed into a (2x1) resulting in 

either a (7xi)T(2xl) or C(4x8)+(2xl) compound surface. 

The stability of the C(2x6) + (2xl) surface in a reducing atmosphere 

was examined. There was no noticeable change in the LEED pattern 

-7 
after the surface had been exposed to 5 x 10 torr of hydrogen for 

thirty minutes at temperatures below 300° C; however, when the 
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temperature was raised above 300° C, the pattern regressed through the 

C(4x8) and (7x1) structures before finally becoming a (1x1) with a high 

background. When another compound surface was exposed to a 3:1 

mixture of H^/NO, it remained stable at temperatures up to 400°C, but 

it decomposed fairly rapidly at 520° C. When a clean surface was 

exposed to the H^/NO mixture, no ordered structures were formed, 

and the limiting surface coverage was about one half of a monolayer. 
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DISCUSSION OF RESULTS 

Structures Resulting from the Interaction of Nitric Oxide 
and Oxygen with Ru(lOÏO) 

The qualitative nature of LEED observations based solely upon the 

positions of new diffraction features does not allow for an unambiguous 

assignment of atomic positions, and while only one model for each 

particular interaction will be considered, it must be borne in mind that 

in general several structural types could satisfy the individual diffraction 

results. The proposed surface structures account for the observed 

LEED patterns, are consistent with the Auger analyses and have some 

basis in the current literature. These models are ideal, two-dimensional 

overlayers, but if the trough-like nature of the substrate is considered, 

the different environments of atoms within the overlayers must cause 

their heights above an ideal hep (10Ï0) surface to vary. The existence 

of buckling of this sort would make itself manifest in altered intensities, 

but at the level of interpretation employed in this study it is quite 

impossible to draw any conclusions regarding such displacements. A 

definitive answer concerning the atomic arrangements in these surface 

structures could only be obtained from an analysis of the intensity data. 

The C(2x4) and (2x1) surface structures were formed by rapid 

adsorption of either NO or O^ at moderate temperatures. These surfaces 

have been extensively studied by KGB who concluded that they were 
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formed by the dissociative adsorption of the diatoms into the ordered 

arrays shown in Figs. 14a and 14b. The chemisorbed species sit in 

the simple potential minima of the substrate lattice as assumed in the 

classical approach to chemis orbed structures. It is not possible to 

ascertain the position of an adatom relative to the underlying substrate 

atoms, but Marcus, Demuth and Jepsen (50) have performed an intensity 

analysis of the Ni{100)-{2xl)-0 structure. They found that the O atoms 

were in the two-fold bridge position directly above the short side of the 

rectangular unit cell at a distance of 1.45 A above the plane passing 

through the center of the underlying Ni layer. 

According to the KGB model, NO dissociatively adsorbs to form a 

C(2x4) surface at a coverage of one quarter of a monolayer of N and O 

atoms and a (2x1) array at a maximum coverage of one half u£ a. moiio-

layer. This model is the basis for relating relative Auger intensities to 

absolute coverages. The average maximum Auger peak height of either 

O (from an dose) or N plus O (from an NO dose) from twenty-five 

observations of the (2x1) surface was 40±2 arbitrary units. This peak-

to-peak height was considered to correspond to one half of a monolayer 

of adsorbed atoms. This definition, along with the assumption that the 

peak height was a linear function of the surface coverage, was used to 

scale the data. This proportionality constant produced values of a, the 

cross section for electron-stimulated desorption, and X. the electron 
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escape depth, which are in reasonable agreement with accepted values, 

and it provided very good agreement between the adatom densities 

predicted by atomic models proposed for the ordered structures and 

those found by Auger analysis. 

While this study does not provide sufficient data to develop a detailed 

microscopic model of the kinetics of formation of these structures, 

examination of Figs. 10 and 12 can provide some insight into the 

mechanism. The shapes of the fractional surface coverage versus 

exposure curves for NO and indicate that basically the same kinetics 

are applicable in both cases for coverages below 0. 2; beyond this point 

the oxygen data show a decrease in the rate of adsorption. If the 

sticking probability is constant up to almost saturation coverage, it is 

then generally thought that the adsorption takes place via a weakly buund, 

highly mobile precursor state (74). Molecules in this state diffuse 

across the partially-covered surface until they either encounter unoc­

cupied adsorption sites or desorb; as a result, the overall sticking 

probability will be determined by the relative rates of these two 

processes. Such precursor states have very short lifetimes on the 

surface at moderate temperatures, but they can diffuse appreciable 

distances during their adsorbed lifetime. The equilibrium coverage of 

such molecules is considered to be negligible compared to the 

chemisorbed layer. 
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In the case of NO adsorption, the precursor state may be the weakly 

chemisorbed molecular state observed by KGB. The heat of adsorption 

should be sufficiently large to insure that essentially every impinging NO 

molecule is trapped at the surface and enters this precursor state. 

These molecules would then diffuse to sites where they can dissociate 

and become strongly chemisorbed. KGB presented evidence that 

indicated, once the NO bond was broken, additional diffusion resulted in 

the segregation of the adatoms into separate patches of N and O. They 

did not propose the existence of two different types of adsorption sites 

but only that the preference of each dissociated species for like 

neighbors was sufficient driving force to result in segregation. It should 

be noted that this segregation of like adatoms into patches is not the 

only explanation that is consistent with the results of KGB and that lue 

conclusions based on this study are not dependent upon this type of 

adatom rearrangement. However, the appearance of ordered LEED 

structures long before saturation coverage was reached does indicate 

that the adatoms tend to form islands even in the limit of very low 

coverage. 

The oxygen data began to deviate from the NO results upon completion 

of the C(2x4) structure. This may have occurred because no chemisorbed 

molecular state for O^ similar to the one for NO has been found; as a 

result, the oxygen precursor state should be much more weakly bound 
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than the NO precursor. If once the surface is covered with the ordered 

C(2x4) overlayer, the heat of adsorption of molecular oxygen in the 

precursor state drops, then the activation energy necessary to pass 

from the precursor state to the chemisorbed state may become greater 

than the activation energy for desorption from the precursor state. In 

this circumstance chemisorption becomes activated, and the nucleation 

of the (2x1) surface structure would be a slow process. Precursor 

molecules must migrate large distances before encountering the edge of 

a (2x1) island, and only those molecules adsorbed within a characteristic 

migration distance of the island edges become strongly chemisorbed. 

As the islands grow, the perimeters expand, and the sticking coefficient 

begins to increase. As the coverage continues to increase, the vacant 

troughs on the C(2x4) surface become occupied; these troughs which are 

nearly filled, but still staggered with respect to one another, begin to 

align by diffusion. This would cause the % order reflections to merge 

into ^order spots. The uptake of oxygen at temperatures below 200° C 

ceases with the completion ot the (2x1) structure because there are no 

molecular adsorption states and because the occupation of the vacant 

sites along the troughs in the (2x1) surface is energetically unfavorable 

since the resultant 0-0 separation distance (2. 71 A) would be less than 

2 -
the diameter of an O ion (2. 8 A). 

The (7x1), C(4x8) and C(2x6) surfaces were formed only after long 
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exposures to either NO or O^ at elevated temperatures. All of these 

surfaces are modeled as coincident lattices in which most of the atoms 

lie in positions of low symmetry with respect to the underlying substrate. 

The coincident lattice model (75) involves the placement of a simple 

uniform overlayer structure upon a known substrate geometry. The 

basic assumption is that the atoms in the surface layer interact with one 

another in such a manner as to form an overlayer structure that in 

general ignores the two-dimensional periodicity of the substrate, and, 

as a result, atoms in the surface overlayer may not always reside on 

substrate sites of high symmetry that tend to maximize the bonding 

coordination of the surface to substrate atoms. In such models there is 

only an occasional coincidence between lattice points of the surface and 

substrate alruclures. The existcncc cf such cvsrlayers was confirmer! 

by the first analysis of LEED intensities. Tucker and Duke (76), who 

used data-reduction and kinematical concepts, found that a Rh(100)-C(2x8) 

O structure was indeed a coincident lattice. 

One possible atomic configuration that would account for a C(2x6) 

LEED pattern is shown in Fig. 15. The oxygen adatoms form a hep 

array that is compressed (ûi = 93°; /3 = 133°) along the direction of the 

troughs. The overlayer is rather loosely packed with the smallest 0-0 

distance equal to 3. 73 A. Sensible deviations from the coincident lattice 

configuration and high chemical activity could be expected to result from 
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the rather open structure. The lack of registry between the overlayer 

and substrate in this model for the C(2x6) could produce variations in 

the bonding with the most weakly bound O on those sites furthest 

removed from registry. This variation in the bonding would account 

for the rapid initial drop in surface coverage when a surface containing 

regions of C(2x6) structure is either exposed to the Auger beam or 

evacuated. The ideal model coverage of 5/6 or 0. 83 corresponds to the 

experimentally observed maximum coverage of 0.80±. 05. 

This particular overlayer was originally proposed by Tucker (77, 78) 

for a C(2x6)-0 overlayer on Rh(llO). The (110) face of a fee metal is 

similar to a hep (10Ï0) plane, but they differ in the coordination numbers 

of the surface and second-layer atoms. Tucker based his conclusions 

nr>or> 3 mi o "l i f ra f ixro e i H jQ"»* o f î rvn rs-f o-T ••"V* ^ 4 ««4-4*4 ^ 

fractional order beams with incident beam energy. He positioned the 

oxygen layer on top of the substrate atoms. The adatom density was not 

measured experimentally. A C(2x6)-0 has also been observed on Cu(llO) 

(79), but i'iO coverage rxieasureineiita were made, and no model was 

proposed. 

A minimum temperature of formation of over 400° C and an estimated 

sticking coefficient of less than 0. 05 indicate that there is a considerable 

activation barrier to the nucleation of C(2x6) islands on a (2x1) surface. 

The barrier to continued adsorption into the C(2x6) phase at elevated 
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temperatures increases with coverage until it eventually becomes 

greater than the activation energy for desorption from the precursor 

state thus effectively preventing the completion of the C(2x6) structure 

on a laboratory time scale. Under steady-state conditions the surface 

is covered with a mixture of C(2x6) and (2x1) domains. The individual 

4 °2 
patches have areas on the order of 10 A or more since the diffraction 

pattern is a superposition of the spots belonging to each of the structures 

which indicates that the patches are larger than the coherence width of 

the incident beam, i.e., each domain scatters electrons independently 

and the intensity contributions from the individual regions add together 

to form the resultant diffraction pattern. If the substrate temperature 

is reduced below 200° C, the rate of desorption from the precursor state 

decreases, and the surface sventually becomes comp^erely roveren with 

the C(2x6) phase. The faster disappearance of the (2xJ ) in an NO ambient 

than in is consistent with the proposed precursor state model. 

The coexistence of two structurally different surface phases at 

elevated temperatures has been observed for the O^/Ni'llO) system. An 

oxide overlayer formed on the Ni(llO) surface at room temperature (80). 

The overall repeating mesh of the surface structure was (9x4), and the 

"pseudo-oxide" plane closely resembled the (100) face of NiO. When this 

pseudo-oxide was heated, an irreversible disproportionation into islands 

of proper NiO surrounded by (2x1)-O structure occurred. 
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The presence of two oxygen species on a Ru surface has been 

confirmed by the work of Kim and Winograd (81). Their XPS study of 

Ru powder exposed to 100 torr of for three hours showed that oxygen 

uptake ceased below the amount necessary for the formation of RuO^. 

Two Oj peaks separated by 1.6 eV were present in the spectrum. The 

lower energy peak was attributed to oxygen below the surface, perhaps 

RuO, while the high energy peak was assigned to chemisorbed atomic O, 

Two forms of adsorbed oxygen were clearly present but a more explicit 

description of the structural differences was not possible from the XPS 

data alone. 

A possible adatom overlayer that would produce a C(4x8) LEED 

pattern is shown in Fig. 16. The C(4x8) is very similar to the (2x1). It 

can be formed from the (2x1) by xernùviûg about 7% of the adatcms and by 

shifting every other column of adatoms in a direction perpendicular to 

the troughs. In fact a C(4x8) can be produced by flashing a (2x1) surface 

to 750° C in vacuo. Since oxygen can be removed from the surface by 

holding the sample at 650° C overnight in vacuo, the Ru-O bond must be 

rather weak at these temperatures, and it seems reasonable that the 

long-range Coulomb repulsions between the electronegative O atoms 

would force the adatoms farther apart. The nearest-neighbor distances 

in the C(4x8) are about 10% larger than in the (2x1). The predicted 

coverage of 7/16 or 0. 438 is in good agreement with the observed 
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Fig. 16. Nonprimitive centered-rectangular unit cell of the C(4x8) 
oxygen overlayer due to NO or interaction with R-a(lOÏO) 
at 750° C. The dashed lines indicate the primitive unit cell 
of the overlayer. 

coverage of 0, 47±. 02. 

The proposed (7x1) overlayer shown in Fig. 17 is most likely formed 

by either a number of adsorption/desorption steps with random recom­

bination of the adatoms or by highly mobile adatoms with large repulsive 

interactions. The temperature necessary to form this structure 
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Fig. 17. Doubly primitive unit cell of the (7x1) oxygen overlayer due 
to NO or interaction with Ru(IOÏO) at 950° C. 

correlates with the observed temperature of 930°C for the onset of 

oxygen desorption from an Ru field-emitter tip (73) and with the thermal 

desorption results of KGB and Madey et al. (10) which showed no oxygen 

desorption below 900° C and only partial desorption at temperatures near 

1000° C. The predicted coverage of 2/7 or 0. 286 is in excellent agree­

ment with the observed coverage of 0. 28±. 02, 

The LEED/AES results for the O^/Ru system are summarized in 

Table L The results for the NO/Ru system are identical except that 

the C(2x4) and (2x1) surfaces have equal amounts of adsorbed N and O 

atoms when the substrate temperature is less than 200° C. The proposed 
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Table 1. Overlayer structures resulting from the interaction of 
Og with Ru(lOÏO) 

Structure lattice type gmax 
exp 

^max 
model T^^^ CO formation 

C{2x4) simple 0. 25±. 02 0. 25 -25 

(2x1) simple 0.50±.02^ 0. 50 -25 

C(2x6) coincident 0,80±.05 0. 83 400^ 

C(4x8) coincident 0.47±. 02 0. 43 600 

(7x1) coincident 0, 28±. 02 0.29 >900 

definition-

^Only observed after cooling a C(2x6) + (2xl) below 200° C in NO or 0_. 

models for the low-temperature LEED patterns are characterized by the 

fact that all of the adatoms are in equivalent sites of high symmetry with 

respect to the substrate, while the remaining patterns have been modeled 

as coincident lattices in which most of the adatoms lie in positions of low 

symmetry. There is a considerable body of experimental evidence which 

indicates that there is a fundamental difference in the bonding of the 

oxygen adatoms to the surface between the simple and the coincident 

lattices. The simple lattices were formed by rapid adsorption of NO or 

O^ at temperatures as low as -25° C, while the coincident lattices were 

characterized by sticking coefficients that were an order of magnitude 
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smaller and by minimum temperatures of formation between 400 and 

900° C. The transition from a simple to a coincident lattice was irre­

versible, i. e., once a coincident lattice had been formed from a simple 

lattice by continued adsorption or by heating the surface, the resultant 

coincident lattice never reverted to a simple structure. On the other 

hand, transitions between the two simple lattices or among the three 

coincident lattices were reversible, e.g., a C(4x8) could be produced 

from a (7x1) surface by adsorption of NO at temperatures between 400 

and 650° C, while the (7x1) could be regenerated either by flashing the 

C(4x8) to 950° C in vacuo or by exposing the C(4x8) to at elevated 

temperatures. 

Even though the proposed atomic models for the coincident lattices 

do not require any rearrangement of the top layer of metal atoms in 

order to be able to satisfactorily account for the LEED data and the 

relative surface coverages determined by AES, these models do not 

provide any insight into possible reasons for either the appreciable 

activation energy necessary for the formation of these structuree ùr the 

stability of these surfaces once they have been formed. The formulation 

of these lattices as two-dimensional, nonstoichiometric surface oxide 

phases formed by the incorporation of oxygen adatoms in a reconstructed 

layer of metal atoms can account for these observations. The LEED 

data do not exclude the possibility of surface reconstruction since, if 
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the rearranged surface atoms form an array having the same symmetry 

with respect to the underlying metal atoms as the overlayer, this 

reconstruction would cause only variations in diffracted intensities and 

would not cause the appearance of new fractional-order beams. 

One possible configuration of surface atoms that would have C(2x6) 

symmetry with respect to the substrate is shown in Fig. 18b. This 

array is the asymmetric unit of the reconstructed surface; the nonprim-

itive rectangular unit cell of the C(2x6) surface is formed by reflection 

of the asymmetric unit throught the mirror plane which passes through 

the centers of the atoms in the top row. This structure is formed by 

shifting the surface atoms in the two center rows of Fig. 18a from the 

four-fold holes formed by the underlying metal atoms to the adjacent 

three-fold holes which are only 1. 6 A away. This reconstruction is 

accomplished without any change in the density of surface atoms. The 

reduction in metal-metal coordination accompanying reconstruction is 

counterbalanced by an increase in metal-adatom interactions. The 

average metal-metal distance in this layer is 3. 29 A. which is only 6% 

smaller than the average distance in the unreconstructed layer. 

One possible transition state that would lead to the formation of a 

C(2x6) by the reconstruction of a (2xl)-0 is shown in Fig. 18c. The 

oxygen adatoms in the (2x1) have been placed in the two-fold bridge 

positions over the short side of the substrate unit cell. This is the 



www.manaraa.com

86 

/ 

(0 

MKK. Î-W ./ -, 

OXYGEN ADATOM 

RU SURFACE ATOM 

m I rT/- /"x \ I r> i Av/p-r^ A-r/-M»« 
nu OLLvVI^U -LA T CH M I UIVI 

RU THIRD-LAYER ATOM 

Fig. 18, C(2x6) oxide overlayer formed by the reconstruction of a 
Ru(lOlO) surface; a) ideal Ru(lOÏO) surface, b) asymmetric 
unit of the reconstructed metal surface, c) transition state 
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atomic configuration proposed by Marcus et al. (50) for Ni(110)-(2xl)-0. 

The transition state complex is formed when one of the vacant columns 

in the (2x1) surface is occupied by an molecule. If the 0-0 bond 

happens to stretch in the [OOl] direction at the same time that the 

adjacent Ru and O atoms are moving in the directions indicated by the 

arrows in Fig. 18c, then it is possible that the 0-0 bond will break, the 

surface atoms will shift and the C(2x6) structure shown in Fig. ISd will 

be formed. Since a large number of atoms are involved in the transition 

state complex and since the lifetimes of oxygen molecules on the surface 

at elevated temperatures are expected to be very short, the probability 

that this concerted step will occur is very small. Since several bonds 

must be broken and some surface atoms must be displaced, the activation 

energy should bç fairly large. Once the C(2x6) phase has nucleated, 

the activation energy should decrease. The ideal reconstructed overlayer 

has atoms that are only 1. 6 A from atoms in the unreconstructed surface. 

This distance is much less than the near est-neighbor distance of 2. 71 A; 

as a result, atoms near the phase boundaries must be forced out of their 

equilibrium positions resulting in a large amount of local strain. This 

strain reduced the activation energy necessary for the continued growth 

of the C(2x6) phase along the [OlO] direction. This mechanism for the 

nucleation and growth of the oxide phase would result in the formation of 

large domains. 
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The atomic model originally proposed for the C(2x6)-0 overlayer 

(see Fig. 15) is a planar array with oxygen atoms at (0, 0), (0, 5, 14) and 

(0, 10. 28), If the adatom at the origin is placed in the bridge position 

between Ru{l) and Ru(2) in Fig. 18b, the adatom at (0, 5. 14) would 

nearly be centered between Ru{4) and Ru(7): in fact, the adatom is only 

2 -
0. 44 A from the bridge position. The minimum distance between an O 

ion and a Ru atom should be approximately equal to one half of the sum 

of the diameter of the ion and the near est-neighbor distance in the metal 

or about 2. 75 Â. In order for the adatom to be 2. 75 A from Ru(4) and 

Ru(7), it must be 1. 73 A above the plane passing through the centers of 

the metal atoms. This adatom is effectively bridge bonded to the surface 

since the next nearest metal atom is Ru(5) which is at a distance of 

5. 22 A. The ovcilayer oxygen adatom at (0, 10. 28) is less rban 0. 2 A 

from the center of the triangle formed by Ru{7)-Ru(10)-Ru(ll). This 

2 -
opening is sufficiently large to allow an O ion to penetrate the surface 

and bridge bond to two second-layer metal atoms. This adatom would 

be almost copianar with the top layer of metal atoms. It would be 

expected to be very strongly bound since it is 2. 74 A from Ru(7), Ru(lO) 

and Ru(ll) and 2. 91 A from Ru(8). 

This reconstruction model for the C(2x6)-0 structure provides 

reasonable explanations for the experimental observations. The number 

of oxygen adatoms per unit cell agrees with the AES results, and these 
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adatoms are in bonding sites that maximize the oxygen-metal interaction 

' and that are within 10% of the positions calculated from the LEED data. 

This model predicts both a large activation energy and island growth. 

Neither long-range migrations of surface atoms nor transport of atoms 

between the bulk and surface regions are necessary. 

A considerable amount of supporting evidence for this surface oxide 

model can be found in the recent literature. One of the more convincing 

pieces of this evidence is the XPS/UPS study of the 0^/Ni system by 

Norton and Tapping (82). The adsorption of oxygen on Ni foils was 

characterized by two kinetic regions. In the first (0 S 0, 4) it was 

established that chemisorption occurred with little change in the core 

and valence spectra which indicated that the surface metal atoms retained 

their metallic character. In the range 0. 5 s 9 s Z. 0 the core and valence 

level spectra reflected the occurrence of oxide nucleation and finally the 

formation of a passive film of NiO. 

Several other studies have found indirect evidence for the formation 

of surface oxides among the Group VIII metals. Ducros and Merrill (83) 

did a LEED/AES study of on Pt(llO) and found that at temperatures 

above 800° C oxygen produced an elongated C(2x2) LEED pattern which 

was attributed to a transition oxide that led eventually to the epitaxial 

growth of PtO. The PtO overlayer did not react with or CO and 

decomposed above 1000° C. The interactions of O^ with Ir(lll) (84) and 
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Ru(OOOl) (10) have also been studied. Both surfaces have hexagonal 

symmetry and exhibited (2x2) LEED patterns after exposure to at 

room temperature. Both teams of investigators attributed the observed 

pattern to three degenerate domains of (2x1) symmetry. According to 

this model, an ideal surface would have a coverage of one half of a 

monolayer, but in both cases adsorption was observed to continue 

beyond this point with no change in the LEED pattern. 

Ivanov et al. (84) found a peak in their thermal desorption spectra of 

oxygen from Ir(lll) at 1270 K. They concluded that this feature was not 

due to desorption of oxygen from the ordered overlayer that produced 

the (2x2) LEED pattern; rather it represented desorption from a 

nonstoichiometric oxide in the near-surface region. This surface oxide 

had a minimum temperature of formation arounu 400° C, deoomposed 

near 1000° C and exhibited a (1x1) LEED pattern. The (2x2) pattern was 

the same whether the oxide was present or not. 

The adsorption data of Ma de y et al. (10) for Ru(OOOl) seemed to 

indicate clearly that there were at least two modes of oxygen bonding to 

the surface. There was a distinct change in the surface dipole moment 

per adsorbed species at 0 »0. 5, at precisely the same coverage at which 

the LEED intensity reached its maximum value. In addition, the tem­

perature dependence of the LEED intensities was different for 8 % 0. 5 

and G % 1.0. They proposed the formation of a RuO^ overlayer with 
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(2x2) symmetry to explain these results, but they did not rule out the 

possibility of surface reconstruction. 

The Relationship Between the Observed Structures 
and the Results of Previous Investigations 

The results of this investigation suggest a possible reason for the 

reported (2-4, 6) dual state behavior of supported Ru catalysts. Taylor 

et al. (4) observed a reversible conversion of their Ru catalyst between 

two activity states. The oxidized form was produced by treating the 

catalyst with either at 200° C or NO at 300° C, The reduced state was 

regenerated by exposing the oxidized form to or CO at temperatures 

above 650° C. Hydrogen chemisorption studies showed that the reduced 

and oxidized forms contained 0. 6 and 0. 8 monolayers of oxygen, 

respectively. These two states exhibited about the same activity for the 

reduction of NO to N^. but they differed in their activity for ammonia 

decomposition and hydrocarbon formation from CO and H^. The oxidized 

form was active, while the reduced catalyst was basically inert. 

The oxidized form of a supported Ru catalyst resembles the C(2x6)-0 

oxide phase observed in this study. They both exhibit minimum temper­

atures of formation, are stable in reducing atmospheres at moderate 

temperatures and have oxygen coverages in the submonolayer range. The 

geometrical configuration and electronic structure of the reconstructed 

oxide layer shown in Fig. 18d are different than those of the bare metal, 
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and these differences should result in a difference in catalytic activity. 

Since some of the oxygen adatoms are incorporated in the reconstructed 

metal surface, chemisorption may take place on either the metal atoms 

or the oxygen atoms. The activity of the oxidized catalyst for ammonia 

decomposition and hydrocarbon formation may be related to the ability 

of the oxygen adatoms to form hydroxy! groups with adsorbed hydrogen. 

On the other hand, the two forms of the catalyst would be expected to 

have about the same activity for the reduction of NO to if the rate of 

this reaction depended solely upon the ability of a catalyst to adsorb NO 

dissociatively. 

Since the kinetic studies were done under much more drastic 

experimental conditions, i.e., at much higher pressures and with 

multi-cointJOiiciiL feed streams, it is net cxpcctcd that the surface oxide 

formed under those conditions would correspond exactly with the observed 

C(2x6)-0 phase. If the oxidized form of the catalyst does have a recon­

structed surface, then the reduced form would have an unreconstructed 

surface with a disordered oxygen overlayer. There was ao iudication of 

surface contamination by the nitrogen-containing layer proposed by 

Voorhoeve and Trimble (60) to account for dual state behavior. It is 

possible that this layer does not form to an appreciable extent under the 

milder experimental conditions used in this study; however, the presence 

of nitrogen on a reduced Ru catalyst has not been verified experimentally; 
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as a result, it is also possible that such a layer does not exist. 

A variation in chemisorption properties with surface structure has 

been observed by Helms, Bonzel and Kelemen (85) for a Pt(lOO) surface. 

The clean surface can exist in one of two geometries depending upon the 

method used to clean it. The surface atoms can occupy the normal bulk 

positions, or they can reconstruct to form a surface which exhibits a 

(5x20) LEED pattern. The (5x20) has been interpreted as being due to 

the formation of a hexagonal, closepacked overlayer on the otherwise 

unperturbed lattice. There was a three order of magnitude difference 

in the sticking coefficients of and between the unreconstructed 

surface which was active and the (5x20) which was inert. 
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FUTURE INVESTIGATIONS 

This investigation has shown that the interaction of Ru(lOÏO) with 

nitric oxide or oxygen resulted in the formation of a number of different 

surface structures. There was a considerable amount of indirect 

evidence that indicated the existence of two distinct bonding modes of 

oxygen to the surface. It would appear advantageous to correlate this 

study with photoelectron spectroscopic measurements in hopes of 

obtaining more direct information on the electronic structure of the 

adsorbed complexes. It has been amply demonstrated that x ray induced 

photoelectron spectroscopy (XPS, also known as ESCA) yields information 

on both core levels (energy relative to the Fermi level and photoemission 

intensity) and valence levels, while ultraviolet photoelectron spectroscopy 

(UPS) can probe the valence region with increased sensitivity and 

resolution. These techniques can be applied to adsorbate systems. The 

determination of the relationship between the fractional surface coverage 

of an adsorbate and the changes in the XPS and UPS spectra may verify 

the existence of a surface oxide layer. In situ use of a LEED system 

would provide a firm basis for comparison between data obtained by these 

methods and those obtained in this study. 
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